
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP012049
TITLE: Triangulating Trimmed NURBS Surfaces

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: International Conference on Curves and Surfaces [4th], Saint-Malo,
France, 1-7 July 1999. Proceedings, Volume 1. Curve and Surface Design

To order the complete compilation report, use: ADA399461

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADPO12010 thru ADP012054

UNCLASSIFIED



Triangulating Trimmed NURBS Surfaces

Chang Shu and Pierre Boulanger

Abstract. This paper describes techniques for the piecewise linear ap-
proximation of trimmed NURBS surfaces. The problem, called surface
triangulation, arises from many applications in CAD and graphics. The
new method generates triangular meshes that are adaptive to the local
surface curvature. We use efficient data structures for the handling of
trimming curves. We also generate Delaunay triangulation on the surface
to improve the quality of the meshes.

§1. Introduction

Tensor-product NURBS are widely used in today's CAD systems for describing
and exchanging surface geometry. For many applications, however, piecewise
linear approximations of smooth surfaces are required. Examples of these ap-
plications include finite element analysis, stereo-lithography, and visualization
of geometric models. In these applications, we need to generate a triangular
mesh that approximates the original surface within a given tolerance. We refer
to this problem as surface triangulation, stated in'the following definition.

Definition. Given a NURBS surface N(u, v), its trimming boundary, and
a real number E, the surface triangulation problem is to find a set of linearly
parameterized triangles {T2 } such that

1) Any triangle T, satisfies sup lITd(u, v) - N(u, v)II < E.
2) For any triangle edge not on the boundary, there is exactly one neighbor-

ing triangle sharing this edge.

The first condition is usually called chord height tolerance, which restricts
triangles to be close to the surface. The second condition requires the trian-
gular mesh to be topologically correct.

A good surface triangulation algorithm is expected to be efficient because
real world models tend to contain large numbers of surface patches. Further-
more, certain optimization factors are desirable. Two of the most important
ones are triangle shape and the number of triangles in the mesh. For exam-
ple, in finite element analysis, triangles with bad aspect ratio (one angle is

Curve and Surface Design: Saint-Malo 1999 381
Pierre-Jean Laurent, Paul Sablonnibre, and Larry L. Schumaker (eds.), pp. 381-388.
Copyright 0 2000 by Vanderbilt University Press, Nashville, TN.
ISBN 0-8265-1356-5.
All rights of reproduction in any form reserved.



382 C. Shu and P. Boulanger

significantly smaller or larger than the others) reduce the solution precision.
In all applications, a mesh with a small number of triangles saves computing
and transmission time as well as storage space.

Several authors [4,6,8,14] have approached the surface triangulation prob-
lem by computing a bound on the length of triangle edges in parametric space
so that if all triangles have their edge lengths smaller than the bound, the
resulting triangulation satisfies the chord height tolerance. Since the edge
length bound applies to the whole surface, the density of the triangulation
distributes uniformly across the surface and may lead to unnecessarily large
mesh size. Along another line of thought, Klein and Stral3er [5] considered
the problem of placing points based on the surface curvature. Recently, Piegl
and Tiller [11] used adaptive subdivision of the surface. Obviously, for a given
chord height tolerance, adaptive algorithms generate fewer triangles than the
uniform subdivision algorithms. But adaptive algorithms tend to be slower.

In this paper, we give a method that has the following features:

1) adaptive to the surface curvature,

2) efficient insertion of the trimming curves,

3) triangle shape improvement.

Our general strategy is that we first approximate the surface with hierar-
chical quadrilaterals without considering the trimming curves, then we insert
the trimming curves and triangulate the quadrilaterals. The result is a trian-
gulation that satisfies the chord height tolerance. We improve the efficiency
of trimming curve insertion by organizing the quadrilateral hierarchies in a
quadtree structure. Also, we improve the quality of the triangles by convert-
ing the initial triangulation to a Delaunay triangulation.

§2. Curve and Surface Subdivision

We begin by discretizing the surface and its trim curves independently. We
assume that the surfaces are trimmed in the parametric domain and the trim-
ming curves are represented as NURBS with consistent orientation. Our first
objective is to approximate the curves with connected line segments such that
they do not deviate from the surface more than the tolerance -. From well-
known results in B-Spline theory [7,10], a NURBS curve can be split into two
pieces without changing its shape by inserting new knots. The consequence
of this splitting is that we introduce new control points that are closer to the
curve than the control points of the original curve. If we keep dividing in this
way, the control polygon converges to the surface. When a sub-curve's control
polygon becomes "flat" enough, we can stop the dividing process. Accord-
ing to the convex hull property of NURBS, the maximum distance from any
point on the sub-curve to the line segment joining the two end control points
is bounded by the maximum distance between control points to the segment.
Therefore, we can use this bound to control the flatness of the sub-curves.

The surface can be approximated in the same way by quadrilaterals. At
this time, we ignore the trimming boundary. Here, we insert knots in both u



Triangulating Timmed NURBS Surfaces 383

Fig. 1. Full surface subdivision.

and v directions. The flatness test is a little more complex. We examine every
row and column of the control polygon and test their flatness. We also have
to consider the twist factor of a surface patch. Peterson [9] gives a subdivision
method, which we generally follow. Fig. 1 (left) shows a surface approximated
by quadrilaterals.

We use a quadtree data structure to keep track of the surface subdivision
process. A quadrilateral is divided if it does not satisfy the flatness test. Its
children are subject to the same test until at a certain level they are flat
enough. Therefore, more subdivisions are needed at places where surface
curvature is high.

§3. Trim Curve Insertion

We assume the trimming curves are given in the parametric space of the
surfaces which they delineate. They are first discretised into line segments
using the same tolerance for the surface. Then the trimming curve segments
are inserted into the quadtree cells by walking through the quadrilaterals using
adjacency information. The right-hand figure in Fig. 1 shows an example of
the insertion.

The insertion can be done completely in the parametric domain in which
the quadrilaterals correspond to rectangles in two dimensions. Starting with a
vertex of the trimming segments, we first find the rectangle in which this vertex
is contained. This can be done efficiently by traversing down the quadtree.
By following the trimming segments, we can find the segment that crosses one
of the edges of the rectangle. We insert a new vertex on the intersection point
and then start the insertion in the new rectangle.

For efficient insertion of the trimming segments, we make use of a data
structure that can quickly find the neighboring rectangle from the edge of a
rectangle. We store in each rectangle (quadrilateral) vertex the pointers of
the rectangles that use the vertex. Given an edge e = (p, q), we collect all
the rectangles that contain both p and q, Qe = Qp n Qq, where Qp and Qq
are the sets of rectangles associated with vertices p and q respectively. This
is a local operation. The number of elements in Qe should either be 1 or 2.



384 C. Shu and P. Boulanger

Fig. 2. Trimming curve insertion.

In the case of two elements, one of them is the neighboring rectangle we look
for. When there is only one element in Qe, our rectangle does not have a
compatible neighbor. However, if we go up the quadtree, at some level there
must be a rectangle that is the compatible neighbor. Then coming down the
tree, we find the leaf rectangle that is partially neighboring our initial quad.
This is the rectangle that the trimming segment enters.

The time complexity of the insertion process is linear in the number of
quadrilaterals.

Fig. 2 shows the insertion of trimming curves into the rectangles in para-
metric domain. Fig. 3 shows the two cases that a trimming segment enters a
new rectangle: 1) entering from an edge; 2) entering from a vertex.

Fig. 3. Two entering cases.

§4. Initial Triangulation

After the insertion of the trimming segments, we have two kinds of rectangles:
those that are cut by the trimming segments and those that do not intersect
with any part of the trimming segments. For each rectangle being cut, we sort
the vertices of the trimming segments inside the rectangle in counter-clockwise
order to form boundaries of polygons. In general, there can be multiple poly-
gons and each polygon can have multiple boundary loops. Those cells that lie
inside the boundary are triangulated in parametric space. There is no short-
age of triangulation algorithms for 2-dimensional polygonal domains. Here
we adopt the algorithm from [13]. Note that most rectangles lie completely
in the interior of the trimming boundary; their triangulation can simply be
done by triangulating a rectangular domain [1]. If a rectangle is cut-free and
lies outside the trimming boundary, we can simply ignore it. This case can be
decided easily by testing if one of the vertices of the rectangle is in the interior
of the polygon formed by the trimming segments. For robustness reasons, we
choose the centroid of the rectangle for doing the test.



Triangulating Trimmed NURBS Surfaces 385

Fig. 4. Initial triangulation in parametric space and in 3-space.

An initial triangulation in 3-space is obtained by evaluating the para-
metric triangulation. Fig. 4 gives an example of a surface triangulated in
the parametric domain (left) and the corresponding triangulation in 3-space
(right).

§5. Triangle Shape Improvement

As we mentioned in Section 1, there are good reasons to make triangles that
are well-shaped. In practice, it is undesirable to have triangles that are flat
or pointed. These are the triangles that have one small angle or one large
angle. It is well known that Delaunay triangulation for a set of points in
two dimensions is optimal in the sense that it maximizes the minimum angle
[2]. Delaunay triangulation that respect a set of boundary edges can be con-
structed. This kind of triangulation is called constrained Delaunay triangulation
(CDT) [12]. Chew [3] extended the definition of CDT to the curved surfaces
by replacing the empty circumcircle condition with the empty minimum cir-
cumsphere condition. Following Chew's approach, we improve the shape of
the triangles by edge flipping and inserting new nodes at the circumcenters of
the ill-shaped triangles.

Given a pair of triangles, if they form a convex quadrilateral, there are two
choices of the diagonals, one is better than the other in terms of the shapes
of the triangles. By examining each pair of adjacent triangles and flipping
their diagonals if necessary, we can improve the triangulation locally (see top
figures of Fig. 5). Chew [3] shows that the flipping process halts and it leads
to constrained Delaunay triangulation on a surface.

A CDT is the best possible triangulation without introducing new nodes.
To further improve the triangulation, we have to insert new points. Each
time we insert a new point, we do edge flipping again to maintain Delaunay
triangulation. New points are inserted at the circumcenters of the triangles
that violate the shape criteria. The reason of this is we could improve the
shape of several triangles by introducing one point. Fig. 5 illustrates the two
basic operations used repeatedly for improving the shape of the triangles.



386 C. Shu and P. Boulanger

Fig. 5. Edge flipping and node insertion.

Fig. 6. Example 1.

As we flip edges, we want to preserve the error bound for the new trian-
gulation. Given a pair of triangles that are flippable, we check the minimum
distance between the current diagonal and the new diagonal. The distance
should be smaller than the specified approximation tolerance C. This does
not guarantee that the resulting triangulation still satisfies the approximation
tolerance. But since we are not moving any nodes on the surface and we in-
sert additional nodes into the triangulation, there are good reasons to assume
that most triangles will satisfy the tolerance. Finally, as a last step, we loop
through all triangles and check their chord heights. For those few triangles
that violate chord height tolerance, we subdivide them by adding points on
their edges. The checking is generally expensive, but we only do this once



Triangulating Trimmed NURBS Surfaces 387

Fig. 7. Example 2.

for each triangle, and the process can be speeded up by making use of the
quadtree data structure.

Figs. 6 and 7 give two results of the algorithm before and after shape

improvements.

§6. Concluding Remarks

The main results of this work are:

1) a surface triangulation algorithm that guarantees correct mesh topology,

2) an efficient trimming curve insertion scheme,

3) triangle shape improvement by Delaunay triangulation.

We have only discussed the problem of triangulating a single surface. How-
ever, in real world problems, a model usually consists of many NURBS surface
patches. The triangulation between two neighboring surfaces have to be com-
patible. There should be a post-processing step that stitches the triangulation
of different surfaces. This can be done with a kd-tree data structure, which

facilities locating nearest nodes in 3-space quickly. Therefore, we can propa-
gate a node on the boundary of one surface to the boundary of its neighboring
surface.

References

1. Baehmann, P. L., S. L. Wittchen, M. S. Shephard, K. R. Grice and M. A.
Yerry, Robust, geometrically based, automatic two-dimensional mesh gen-

eration, International Journal for Numerical Methods in Engineering 24
(1987), 1043-1078.

2. Bern, M. and D. Eppstein, Mesh generation and optimal triangulation, in
Computing in Euclidean Geometry, 2nd ed., D.-Z. Du and F. K. Hwang,
(eds.), World Scientific, 1995, 47-123.

3. Chew, P., Guaranteed-quality mesh generation for curved surfaces, Proc.

of the 9th Annual Symposium on Computational Geometry, 1993, 115-
127.



388 C. Shu and P. Boulanger

4. Filip, D. J., R. Magedson and R. Makot, Surface algorithms using bounds
on derivatives, Comput. Aided Geom. Design 3 (1986), 295-311.

5. Klein, K. and W. StraBer, Large mesh generation from boundary models
with parametric face representation, Proc. of the 3rd ACM Symposium
on Solid Modeling and Applications, 1995, 431-440.

6. Kumar, S. and D. Manocha, Efficient rendering of trimmed NURBS sur-
faces, Computer-Aided Design 27 (1995), 509-521.

7. Lane, J. M. and R. F. Riesenfeld, A theoretical development for the
computer generation and display of piecewise polynomial surfaces, IEEE
Trans. Pattern Analysis and Machine Intelligence 2 (1980), 35-46.

8. Lane, J. M. and R. F. Riesenfeld, Bounds on a polynomial, BIT 21 (1981),
112-117.

9. Peterson, J. W., Tessellation of NURBS surfaces, in Graphics Gems IV,
P. S. Heckbert (ed.), Academic Press, New York, 1994, 286-320.

10. Piegl, L. and W. Tiller, The NURBS Book, Springer-Verlag, 1997.
11. Piegl, L. and W.Tiller, Geometry-based triangulation of trimmed NURBS

surfaces, Computer-Aided Design 30 (1998), 11-18.
12. Ruppert, J., A Delaunay refinement algorithm for quality 2-dimensional

mesh generation, Journal of Algorithms 18 (1995), 548-585.
13. Seidel, R., A simple and fast incremental randomized algorithm for com-

puting trapezoidal decompositions and for triangulating polygons, Com-
putational Geometry: Theory and Applications 1 (1991), 51-64.

14. Sheng, X. and B. E. Hirsch, Triangulation of trimmed surfaces in para-
metric space, Computer-Aided Design 24 (1992), 437-444.

Chang Shu and Pierre Boulanger
Institute for Information Technology
National Research Council of Canada
Montreal Road, Ottawa, Ontario
Canada K1A 0R6
chang. shu(iit .nrc. ca, pierre .boulangerPiit .nrc. ca


